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Matthias Möller, Johannes Twiefel, Cornelius Weber, Stefan Wermter
Knowledge Technology, Department of Informatics

University of Hamburg, Germany
Hamburg, Germany

{7moeller, twiefel, weber, wermter}@informatik.uni-hamburg.de

Abstract—In this work, we propose a novel training scheme
to modularize end-to-end systems. Our training scheme aims
at altering the flow of information in an end-to-end system to
use the kernels of this system for another system that fulfills
another task. We apply this scheme to extract the noise reduction
capabilities from a noise-robust automatic speech recognition
(ASR) system and implement a speech enhancer from it. This
enhancer receives spectral representations from unfiltered audio
and outputs cleaned spectral representations. Our enhancer can
be integrated into an ASR system as front-end, is trainable, and
reduces background noise. Our front-end uses a decoder to clean
speech based on the hidden activations of the ASR system Jasper.
While training, we exclusively adapt the weights in our decoder
and the batch normalization in Jasper. The resulting spectral
representations show less background noise. Further, areas in the
spectral features are not reconstructed if they do not contribute
to speech recognition. We demonstrate that our front-end can
be combined with a pre-trained ASR system as back-end and
supports speech recognition in noisy conditions. Further, we show
that training another ASR system with our front-end results in
an increased performance of the ASR system in noisy as well as
noiseless conditions. The ASR system’s performance is especially
improved on challenging speech datasets.

I. INTRODUCTION

One of the most prevalent approaches to increase the
performance of speech recognition systems is speech enhance-
ment which deals with enhancing the presence of speech
in sound while diminishing noise. A problem results from
the aspect that one cannot easily quantify noise in speech.
Several metrics that measure the physical characteristic of
noise do not necessarily correlate with the perceptual presence
of noise. Psychoacoustics has shown that the human perception
of sound and noise is influenced by aspects like the frequency
or the amplitude of the respective speech signal [1], [2]. Many
metrics of speech enhancement are designed based on human
hearing through metrics like mean opinion score (MOS).
However, those metrics have shown to be an inadequate way
for measuring from the perspective of ASR systems [3]. Con-
sequently, several algorithms that were designed to optimize
according to these metrics show questionable results for ASR
systems [3].

On the other hand, pre-trained, noise-robust ASR systems
have learned to deal with different sources of noise. Im-
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plementing the noise reduction capabilities of such systems
into a separate speech enhancer could have many sustainable
benefits. The module could support other pre-trained and less
noise robust ASR systems in noisy environments. That would
be attractive especially for less noise robust ASR systems like
DeepSpeech [3], [4]. Such an enhancer can thereby contribute
to the application of other already trained ASR systems in
real-world scenarios. Further, the enhancer could also support
the other ASR systems in training. ASR systems that are
training on the output of the enhancer would not need to learn
to process the removed noise which can lead to a decrease
in resources for training and result in smaller ASR systems.
Furthermore, we address the possibility that the enhancer could
also be supportive for other speech-related tasks that provide
fewer data than English ASR. This involves ASR of other
languages but also tasks in the field of emotion recognition or
speaker identification.

However, most ASR systems are End-to-End (E2E) systems.
These are usually large monolithic structures that cannot easily
be modularized. For isolating the noise reduction capabilities
from an ASR system, one has to address the questions if
and how the internal filtering mechanisms can be accessed. Li
et al. [5] address these questions in their work, successfully
reconstructing spectral representations of speech by the hidden
activations of an ASR. Their reconstructed spectral represen-
tations show that background noise and speaker information
were less reconstructed with an increasing number of reused
layers of the ASR systems.

Our work takes inspiration from the work of Li et al. [5] but
extends their approach with new ideas. Our speech enhancer
also reconstructs spectral representations from an ASR system.
However, we additionally modulate the flow of information
in the ASR system to support the reconstruction of clean
and natural spectral representations. For this purpose, we use
the optimization technique batch normalization (BN) to let a
network learn which kernels in a noise-robust ASR system
contribute to noise reduction. We combine this idea with
a noise-robust ASR system that provides many possibilities
to forward information by its architecture. The result is a
trainable front-end that removes background noise, retains
speaker information but also deletes frequencies that do not
contribute to speech recognition concerning the speaker.

© 2021 IEEE. Personal use of this material is permitted.



II. RELATED WORK

A. Dataset: LibriSpeech

LibriSpeech [6] is an English speech corpus that contains
about 1000 hours of speech. Panayotov et al. [6] derive
this corpus from audiobooks. LibriSpeech is freely accessible
and contains speech data that were sampled at 16 kHz. It
is a widely used dataset for training ASR systems [7]–[9],
represents the standard dataset for evaluating ASR systems
and reporting benchmark results in English.

LibriSpeech is divided into training, test, and validation
set. The validation set is also called the development set.
Each set is divided into at least two subsets, which differ
because the respective speakers originate from two different
pools of speakers. These pools were created by ranking the
speakers according to a word error rate (WER) they obtained
by applying another ASR system. The ”clean” pool contains
the half with the better performing speakers, while the ”other”
pool contains the rest. Thus, both speaker pools do not share
speakers.

The subsets ”dev-clean” and ”test-clean” consist of 20 male
and 20 female speakers who were randomly chosen from
the ”clean” pool. That results in approximately 8 minutes of
speech for each speaker. The remaining speakers in the ”clean”
pool were used to create the ”train-clean-100” and the ”train-
clean-360” set. The ”other” pool was used similarly to generate
a development and test set. First, the speakers in the ”other”
pool were ranked according to the WER, and four sub-pools
were created based on the speaker’s rank. The speakers for
the test and development set were randomly chosen from the
third sub-pool. The remaining speakers were used to generate
the ”train-500-other” set.

B. Dataset: Noisy Speech Database

The Noisy Speech Database (NSD) [10] is a dataset that
was designed for training and testing speech enhancement
algorithms. It is divided into a train- and a test set. This dataset
contains clean and noisy speech signals with transcriptions for
the spoken sentences. Thus, it represents a baseline for evalu-
ating ASR systems as well as speech enhancement algorithms.

The training set is divided into a 28- and a 56-speakers
dataset [11], [12]. The speakers in the 28-speakers dataset
share the same British accent, while the 56-speakers dataset
contains a wider variety of accents [12]. Each training set
contains the same number of male and female speakers.
In both datasets, each speaker has about 400 sentences of
speech [11]. The samples of clean speech for each speaker
were received from the Voice Bank corpus [13].

For generating noisy speech samples, eight sources of
noise were received from the DEMAND database [14], and
two other sources of noise were artificially generated. The
artificially generated sources of noise were created by using
real speech. One noise was created by adding the voices of
six different speakers into one sound and the second noise
consisted of white noise that was adapted to have a frequency
response that is similar to the voice of a male speaker. This

noise was added to the clean speech with different sound-
to-noise ratios (SNRs). A lower SNR indicates an increased
influence of the noise on the speech signal. For both training
sets, the following SNRs were chosen: 0, 5, 10, 15 dB. Thus,
40 different noise conditions (10 types of background noise ×
4 SNRs) were generated. The noise conditions were equally
distributed on all 400 sentences for each speaker. That resolves
in 10 sentences per speaker for each noise condition.

The test set was constructed in the same way as both training
sets. It differs in selected speakers, types of background
noise, and SNRs. The test set was generated by receiving
approximately 400 speech data of one male and one female
speaker each. As background noise, five different noises were
obtained from the DEMAND database. As for the SNR, 2.5,
7.5, 12.5, 17.5 dB were chosen as respective values [12]. This
combination resulted in about 20 sentences per speaker for
each noise condition.

C. Batch Normalization

Batch normalization (BN) [15] was introduced to counter
the internal covariate shift. This internal covariate shift de-
scribes the changes in the output distribution of a network’s
hidden by adapting its parameters through training [15]. The
changes in the output of a hidden layer are the input for the
subsequent layer and have negatively impact training time.
A BN layer aims to fix the output distribution of a hidden
layer by z-score normalization. However, z-score normaliza-
tion would influence what a layer can present and learn [15].
Therefore, a BN layer applies two trainable parameters: a
scaling factor γ and a bias β:

BN(x) = γ · x̂+ β x̂ =
x(k) − E[xk]√
V ar[x(k)]

By using these parameters, a BN layer can learn to invert the z-
score normalization by adapting γ =

√
V ar[x] and β = E[x].

D. Convolutional Neural Networks in Speech

An ASR system can often be divided into three components:
a front-end, an acoustic model, and a decoder. The front-end’s
task is the conversion from speech signals into sequences of
spectral features which in the context of ASR are convention-
ally called speech features. These features are calculated for
a chosen time frame and overlap from the original wave. A
popular choice for a time-interval and a time-overlap are 20ms
with 50% overlap. In practice, this choice results in about 100
spectral features per second of speech. The acoustic model
outputs probability distributions over characters for every
speech feature. That results in a sequence of 100 predictions
per second. The decoder’s task is the conversion of these
probability distributions over characters into words.

In the last years, several ASR systems emerged that reach
benchmark or near-benchmark results by mainly or entirely us-
ing 1D convolutional neural networks (CNN) in their acoustic
model [7], [8], [16]. A 1D CNN describes a CNN whose kernel
spans all other dimensions completely, apart from the one that
is convolved over. The output of a layer is created by shifting



the kernels from left to right. In ASR systems, these kernels
span multiple speech vectors completely and only shift along
the temporal axis. Usually, a ”same padding” [17] is applied
to counter the loss of the temporal axis. Thereby, the acoustic
model still provides a prediction for each speech feature.

E. Jasper

Jasper [7] is a family of ASR systems that are characterized
through the use of BN, 1D CNN, ReLu, Dropout, and skip
connections. Several near-benchmark and benchmark results
were reported for this family.

Jasper networks are conventionally structured into sub-
blocks and blocks. A sub-block describes a sequence of
1D CNN, BN, ReLU, and Dropout. A block is a sequence
of subsequent sub-blocks. Conventionally, Jasper models are
named according to their blocks and sub-blocks: a model that
is called Jasper B × R refers to an architecture that consists
of B blocks where each block consists of R sub-blocks.

Each Jasper model can be applied in two different topologies
namely the Jasper B × R and the Jasper dense residual
(DR) B × R. Both topologies differ only in how they apply
residual connections. The Jasper B×R topology describes an
architecture where the input of each block is forwarded into
the output of its last sub-block. The Jasper DR B×R topology
describes an architecture that forwards the input of each block
into the last sub-block of each block.

The best performing representative of the Jasper family is
the Jasper DR 10× 5 model [7]. The best model was trained
with a data augmentation technique and an optimization tech-
nique called NovoGrad [7], [18].

F. Reconstructing Spectrograms based on a Network’s Hidden
Activations

Li et al. [5] presented an approach to analyzing ASR
systems. Their approach consisted of reconstructing an ASR
systems’ input from its hidden activations. Therefore, decoder
networks were injected at the hidden activations of several
ASR systems. Only the decoder network’s parameters were
adapted while training. The decoder structure is referred to
as the probing model or reconstruction model. All probing
models were 4-layered highway networks [19].

Several probing models were injected in several layers
of four different ASR systems. Those ASR systems can be
divided into two different network architectures that were
trained either with or without a data augmentation technique.
The first architecture was a pure-LSTM that consisted of five
bi-directional LSTM layers. The second architecture was a
VGG-LSTM that consisted of 4 convolutional layers and 5
subsequent LSTM layers. All ASR systems were trained on
the 100-hour subset of LibriSpeech.

Afterwards, the reconstructed spectrograms were analyzed
according to several speech enhancement metrics and individ-
ual listening. Their overall results imply that the first layers
reduced background noise. However, speaker information we
also not reconstructed and the reconstructed speech was less
natural but sounded artificial.

III. APPROACH

Our approach aims at isolating the noise reduction capabili-
ties of an E2E ASR system and uses these as part of the imple-
mentation of a speech enhancer module. We take inspiration
from the research of Li et al. [5]. They proposed an approach
to analyzing the processing mechanisms of ASR systems
by reconstructing spectrograms from their hidden activations.
Their reconstructed spectrograms showed less background
noise with the shortcomings of losing speaker information.
Thus, we are presented with an approach to access the noise
reduction capabilities of ASR systems. However, the loss of
speaker information contradicts the task of a speech enhancer
that enhances speech while diminishing noise. Speech that is
too synthetic can deteriorate the performance of ASR systems
that have trained with clean data [20].

We address the question of whether we can reconstruct
spectral representations that show less background noise with-
out the shortcomings of losing speaker information. In other
words, we address the question of whether we can construct a
speech enhancer that cleans speech based on an ASR system.
Our speech enhancer produces spectral representations and
thereby fulfills the role of a front-end in an ASR system. The
construction of our front-end follows the implementation of
Li et al. [5] with the following distinctions:

1) we reconstruct spectral representations from the hidden
units of Jasper,

2) we train the BN in Jasper, and
3) we use a speech enhancement dataset for training.

We expect that these distinctions will lead to reconstructed
spectrograms in the upper layers that contain less background
noise while retaining speaker information. We argue as fol-
lows: If Jasper has sequences of kernels that contribute to
noise reduction, forwarding information mainly through those
could support the reconstruction of cleaned spectral repre-
sentations. Advantageously, Jasper applies by its architecture
many skipping connections that allow forwarding information
more freely. Additionally, Jasper implements many BN layers
with two trainable parameters. By training both parameters,
a BN layer can learn to counter the z-score normalization
[15]. On the other hand, it can also learn to stop the flow
of information entirely. Lastly, we consider the training with
a speech enhancement dataset as beneficial for letting the
network learn to identify noise reduction kernels better.

We see several advantages in our approach: Firstly, we
expect that our front-end will learn to ignore many kernels
in Jasper that do not contribute to noise reduction. Therefore,
we see a high potential in shrinking the front-end afterwards.
The shrinking is a task of future work but could result in
a much smaller architecture that is faster and applicable for
devices that provide less performing hardware. Secondly, we
avoid addressing the question of which layer is best suited for
reconstructing spectral representations. Our training scheme
aims to let the front-end learn which kernels are productive
for the reduction of noise throughout the whole ASR system.
Thirdly, we expect the deletion of more than background noise.



Fig. 1. The front-end receives audio as input and reconstructs normalized log Mel-filterbanks. It consists of an encoder (red outline) and a decoder (green
outline). The encoder consists of the reused Jasper blocks which read log Mel-filterbanks. We do not use the Dropout for the training and only train the
BN. The sub-networks in our decoder predict one frame from the hidden activations of Jasper each which are shown in orange and blue. The predicted
spectrograms can afterwards be fed into an ASR system.

On the other hand, the deleted information could be a result
of the inner processing mechanisms of an ASR system. We
could receive insight into what noise is from the perspective
of an ASR system.

A. Architecture

We divide our front-end into encoder and decoder (cf.
Figure 1). The encoder consists of the reused layers of
Jasper, while the decoder is the probing model. Our front-
end receives spectrograms and predicts cleaner spectrograms
of the same format. Jasper uses normalized logarithmized Mel
spectrograms. Thus, we restrict our front-end to output cleaner
normalized Mel spectrograms.
For our encoder, we reuse the Jasper DR 10× 5 model. This
model showed superior performance on LibriSpeech and is
publicly available. Additionally, we found this architecture
more noise-robust than Google ASR. By testing, we observed
that Jasper received a WER of 18% on the NSD test set, while
Google achieved 23%. Furthermore, the DR topology ap-
plies additional residual connections between their blocks [7].
This architecture seems especially beneficial for our training
scheme. We restrict our encoders by only reconstructing
speech on the hidden activations after the blocks of Jasper.
However, every front-end has to use the first block in Jasper.
Jasper’s first block is a preprocessing block that outputs half
as many vectors as it receives speech vectors, which results
from the convolutional layer involving a convolutional stride.
One of Jasper’s last blocks counters this decrease in the size
of the temporal dimension, however, this block is removed
in our encoder. In our following experiments, we reconstruct
speech from different layers of Jasper. That requires removing
the last blocks.
Our decoder is provided with half as many activations as

needed for the reconstruction of every speech vector. We
counter this by applying two separate networks. Both networks
first apply a fully connected layer. The output of the fully
connected layer is afterwards fed into a sequence of highway
layers. These linear projections are necessary because highway
layers require the output and input to be of the same size [19].
Thus, we cannot decrease the size along the spectral dimension
by the highway network. Our first sub-network is tasked to
reconstruct every second frame. Our second sub-network aims
to reconstruct every remaining frame.
We train two networks in our decoder simultaneously, avoiding
separate training but relying on a gradient-based optimization
technique. NovoGrad [18] is related to the family of stochastic
normalized gradient descent (SNGD) optimizers. Thus, it aims
to use the direction of gradients but is less affected by its
magnitude. It averages gradients layer-wise. Since our two
separate networks have different layers, the actual gradients
are calculated separately for each sub-network. Additionally,
NovoGrad outperforms other optimizers in their strongest
domains while using less memory. Further, we expect the high-
way layers to support the training of two separate networks.
Highway layers apply gating mechanisms that modulate the
flow of information. Furthermore, highway networks have
been shown to perform well with CNNs [21], [22].

B. Training

We expect that by retraining the γ and the β in the BN,
our front-end will learn to use certain kernels in Jasper for
cleaning. If a kernel does not contribute to the process of
cleaning, our front-end shall learn to avoid it. Thus, we argue
that an increased number of reused blocks does not negatively
impact the performance of our front-end. To address this
statement in our later experiments, we train three different
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Fig. 2. We train our three front-ends over 400 epochs. The respective graph
shows the training loss over the training steps.

front-ends. Each front-end differs in the number of blocks that
are reused from the Jasper DR 10 × 5. We reuse one, three,
and eleven blocks. We refer to our front-ends as front-end10×5,
front-end3×5, and front-end1×5 respectively.

We train in each configuration only the BN in the encoder
and the decoder. We use the same loss used by Li et al.
[5] and receive most hyperparameters from Jasper’s proposed
configuration [7]. All front-ends are trained over 400 epochs
with a batch size of 64 with the L1 loss. Additionally, we
use NovoGrad but deactivate the weight decay. Further, we
deactivate Dropout and avoid any regularization. Our decoder
uses 8 highway layers and a polynomial learning rate of 0.9.
Our biggest front-end - the front-end10×5 - requires 24 hours
13 minutes of training time on a single NVIDIA Titan RTX.
The training curves can be seen in Figure 2.

IV. EXPERIMENTS

A. Experiment I

This experiment addresses the questions 1) of whether our
front-ends remove background noise, 2) which information is
additionally removed and 3) if our largest architecture, front-
end10×5, produces the most natural spectral representations.
We assume that by training the BN in the Jasper blocks, our
front-end has learned which kernels in Jasper can be used for
filtering. Thus, we expect that our biggest front-end performs
best.

1) Dataset and Metrics: We choose the test set of NSD for
evaluation. The NSD test set provides us with clean speech
samples, noisy speech samples, and respective transcriptions.
The training and test set in the NSD share neither speakers nor
types of noise or SNRs. Thus, our front-ends have not seen any
of the tested noise conditions or speakers. Additionally, this
dataset provides information about the speaker, location (back-
ground noise), and SNR for every sample. This information
supports us in identifying the weaknesses of our front-ends.

In this experiment, we use two different metrics. The mean
absolute error (MAE) enables us to measure the deviation be-
tween two spectral representations. Thus, this metric provides
us with the possibility to quantify the deviation between our
predicted spectrograms to the spectrogram of the actual clean
signal. The word error rate (WER) is the standard metric for

TABLE I
THE ENTRIES PRESENT THE CALCULATED MAE OF THE CLEAN

SPECTROGRAM TO THE NOISY SPECTROGRAMS OR THE SPECTROGRAMS
THAT ARE PRODUCED BY OUR FRONT-ENDS. MAE IS CALCULATED FOR

DIFFERENT SPEAKERS, SNR LEVELS, AND BACKGROUND NOISES
(LOCATIONS). THE NOTATION IS MEAN ± STANDARD DEVIATION.

front-end

noisy 1× 5 3× 5 10× 5

speaker

male 0.48±0.17 0.29±0.07 0.28±0.07 0.26±0.07
female 0.48±0.18 0.29±0.07 0.28±0.07 0.26±0.07

SNR

2.5 0.63±0.16 0.34±0.08 0.33±0.07 0.31±0.08
7.5 0.52±0.14 0.29±0.06 0.28±0.06 0.27±0.06
12.5 0.42±0.12 0.27±0.05 0.26±0.06 0.24±0.06
17.5 0.34±0.12 0.24±0.04 0.23±0.04 0.22±0.04

background noise (location)

bus 0.36±0.14 0.25±0.05 0.24±0.06 0.23±0.06
cafe 0.61±0.16 0.33±0.08 0.32±0.08 0.31±0.08
living 0.56±0.14 0.31±0.07 0.30±0.07 0.28±0.07
office 0.36±0.10 0.25±0.04 0.24±0.04 0.22±0.04
psquare 0.51±0.14 0.29±0.06 0.28±0.06 0.26±0.06

the evaluation concerning ASR systems. We use this metric
to gain insight into how well our front-end can be used for
another already trained Jasper model. This Jasper model is the
Jasper DR 10 × 5 model that was the baseline for our three
front-ends. We speculate that our front-ends - if they are a
fair presentation of the capabilities to process noise - shall not
interfere with the performance of the original model.

2) MAE on Spectrogram Reconstruction: We start to in-
vestigate how far the reconstructed spectrograms deviate from
the clean spectrograms. We feed the noisy spectrograms into
our three different front-ends and predict new spectrograms.
Afterwards, we measure the MAE between clean to noisy
and clean to predicted. Our results are shown in Table I. We
observe that the MAE between the clean spectrograms and the
predicted spectrograms is lower than the MAE between clean
spectrograms the noisy spectrograms for all our front-ends.
Thus, all our front-ends seem to reduce the deviation to the
clean spectrogram. Further, we observe that the MAE between
the female and the male speaker is nearly identical in each
block for every front-end. Further, we notice that our front-
ends reduce the MAE more efficiently if the MAE between
noisy and clean is high.

Overall, we consider MAEs between 0.2 and 0.3 as a small
deviation for normalized log Mel filterbanks. As we can see
in Figure 3, the bins in our spectrograms can have values
between -3 and 4 in some samples. Thus, an average MAE
between 0.2 and 0.3 can be considered as a small deviation.
Further, we point out that we can see the tendency that our pre-
dicted spectrograms are smoother than the clean spectrograms
themselves. As shown in Figure 3, we observe the presence
of artifacts in the clean spectrogram that are missing in our
predicted spectrograms. These artifacts represent changes in
the air pressure in time intervals of 20 ms. We speculate that
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Fig. 3. Both upper spectrograms represent the normalized log Mel filterbanks of the noisy and clean signal. Our front-ends receive the noisy signal and are
tasked to predict cleaner representations that are shown in the lower row.

these changes do not result from speech production. They
could result from other sources like wind or present noise
inherent in the system itself. Thus, they influence the MAE as
our metric but do not necessarily influence the performance
as a front-end.

We further investigate whether we can identify areas in
our predictions that show a higher deviation than other ar-
eas. These deviations do also influence our MAE but could
be irrelevant for speech recognition systems. Therefore, we
concentrate on different Mel frequency bins. We calculate
the MAE between clean and predicted spectrogram bin-wise
for every sample. We observed a tendency that some Mel
frequency bins are less reconstructed based on the speaker
in all our front-ends through all samples. We observe that
the female speaker has a higher MAE in her lower frequency
bin than the male. This is the case for every single predicted
spectrogram for every single front-end.

We speculate if our front-ends are less invested in recon-
structing the lower bin because of the fundamental frequency.
The lower Mel frequency bin represents the frequency domain
between 0-57 Hz, and the second bin represents the frequency
domain between 28-119 Hz. The fundamental frequency of a
male voice is on average between 85-180 Hz, while the female
voice is in a range between 165-250 Hz [23]. Further, only
frequencies above the fundamental frequency hold information
concerning speech recognition. It can be argued that the lower
bin does not contribute to speech recognition. An ASR system
could interpret these bins as ”noise” for its respective task and
learn to ignore them. Such behavior would explain why our
front-ends were not able to reconstruct these bins from the
ASR’s activations.

Afterwards, we manually investigated sample outliers that
show a higher MAE than other samples. We notice that in
many of these samples inhalings are not reconstructed in our
predicted spectrograms. We assume that these inhalings could
be the source for the high MAE. On the other hand, inhaling is
not irrelevant for speech recognition. Therefore, our front-ends
could have adopted this behavior from Jasper.

TABLE II
THIS TABLE SHOWS THE RESULTS CONCERNING THE WER(%) OF JASPER.
WE TESTED ON THE NSD TEST SET AND PROVIDED JASPER EITHER WITH

THE NOISY SPEECH OR THE OUTPUT OF OUR FRONT-ENDS. WE
CALCULATE THE WER CONCERNING THE SPEAKER, SNR, AND

LOCATION.

front-end

noisy 1× 5 3× 5 10× 5

speaker

male 15.7% 15.07% 14.95% 14.18%
female 20.88% 22.05% 22.22% 19.72%

SNR

2.5 29.51% 27.41% 27.51% 25.16%
7.5 18.37% 18.71% 19.52% 16.94%
12.5 11.90% 12.57% 11.57% 10.82%
17.5 13.78% 16.22% 16.34% 15.33%

background noise (location)

bus 14.02% 15.70% 15.54% 13.14%
cafe 29.99% 27.57% 27.80% 26.13%
living 19.58% 21.44% 21.61% 17.83%
office 11.28% 13.84% 13.66% 13.00%
psquare 17.24% 16.09% 16.21% 15.36%

3) WER at Use as Front-End: We test next how well
our front-ends can be used for the pre-trained Jasper DR
10×5 model as back-end. We use again the pre-trained Jasper
DR 10 × 5 model that we use in the encoder of our front-
ends. Again, we test considering different speakers, SNRs, and
locations. The results can be seen in Table II.

We observe that our front-end10×5 outperforms the other
front-ends. Further, we notice that the performance of the
front-end1×5 and front-end3×5 differ concerning the condition.
Our front-end1×5 outperforms our front-end3×5 in an SNR of
2.5 and 7.5 dB. On the other hand, the front-end3×5 shows a
lower WER on the samples with an SNR of 12.5 dB.

We notice two conditions where our front-end10×5 de-
creases the performance of the ASR system. We see a decrease
in the WER for the SNR 17.5 and the background location
”office”. We started to investigate ”office” through listening.



We evaluate the background noise ”office” as less prevalent
than other types of background noise in the audio samples.
We speculate that our front-end decreases the performance of
an ASR if there is little or no noise.

B. Experiment II

We hypothesize that if we have externalized Jasper’s capa-
bility of removing noise, a smaller ASR system does not have
to learn it. Effectively, it could concentrate on learning patterns
in speech data. Further, we want to address the question of
whether we have isolated Jasper noise-robustness. An ASR
system that uses our front-end should still perform better in
noisy environments, even if it was trained on clean data.

1) Dataset, Model, and Loss: As for the choice of the ASR
systems, we use the Jasper 10 × 3 architecture. For a first
experiment, we avoid changing the architecture because they
could require different processing mechanisms concerning
noise. The 10× 3 model is suggested by NVIDIA to work on
a mini-processor called ”Jetson Nano”. Thus, we are provided
with an architecture that was already tested. Jasper 10 × 3
uses about 20 convolutional layers less than the 10 × 5
architecture and showed to be less performant than the DR
10× 5 architecture.

As for the training set, we choose the LibriSpeech training
set. This dataset provides clean speech data and transcriptions
of 80 speakers. Further, it roughly provides an equal amount
of male and female speakers. Each speaker has about 25 to
30 minutes which results in approximately 1000 hours of
speech samples. Further, we use the clean development set
for validation. This subset contains 5.4 hours of speech data
and contains an equal amount of speakers.

For testing, we choose two datasets. On the one hand,
we aim to investigate whether our front-end supports another
Jasper model in noisy environments after training. For this
purpose, we use the test set of the NSD dataset. On the other
hand, we investigate how our trained Jasper model performs
with clean data. Therefore, we use the test-clean and test-
other subset of LibriSpeech. Roughly, both subsets contain 5
hours of speech and have the same amount of female and male
speakers.

2) Results: We train two Jasper 10 × 3 models on Lib-
riSpeech. Our baseline ASR system uses the officially recom-
mended hyper-parameters for training [7]. These recommen-
dations include a data augmentation technique that randomly
masks parts of the spectrograms. It is shown that this data
augmentation technique improved the performance of the
best Jasper model [7]. Further, it could be argued that the
masking can be considered as adding noise. Works indicate
that training with a data augmentation technique leads to more
noise robustness [5], [24]. Our second model also trains on
the recommended values provided by NVIDIA but uses our
front-end10×5 instead of the recommended data augmentation
technique. Both models train over 50 epochs with CTC loss.
We train both with a batch size of 24 on 8 GPUs.

We see the progress of training in Figure 4 over time. We
observe that the ASR system that uses our front-end has a
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Fig. 4. We see the training curve of our front-end (upper) and the validation
curve (lower) with CTC loss on LibriSpeech.

TABLE III
THIS TABLE SHOWS THE WER(%) OF BOTH JASPER 10× 3 SYSTEMS ON
THE NSD TEST SET. ONE SYSTEM USED OUR FRONT-END FOR TRAINING

AS WELL AS TESTING, THE BASELINE SYSTEM TRAINED ON THE
RECOMMENDATIONS OF NVIDIA.

with front-end baseline

NSD
speaker

male 29.82% 38.02%
female 43.01% 48.64%

SNR

2.5 47.53% 57.18%
7.5 38.21% 44.47%
12.5 27.94% 35.05%
17.5 32.96% 38.86%

background noise (location)

bus 31.87% 37.13%
cafe 45.34% 55.41%
living 38.29% 45.88%
office 32.10% 36.42%
psquare 37.67% 44.38%

LibriSpeech
test-clean 10.91% 14.23%
test-other 15.56% 33.65%

less stable learning curve than the baseline model. However,
it outperforms the baseline ASR system in almost every step
on the validation set. The less stable training curve could
be explained by our front-end removing Mel frequency bins
concerning the speaker. The ASR system that trains with our
front-end receives more varying values in these bins. That
could animate the network to learn speech-related patterns in
earlier layers.

We see in Table III that the model that trained with our
front-end shows a better performance in every category of the
NSD. We further note that it also shows superior performance
on clean data. The difference in performance is especially no-
ticeable on the LibriSpeech test-other dataset that is considered
more challenging.



V. CONCLUSION

Our results indicate that we have leveraged the noise pro-
cessing capabilities of a pre-trained ASR neural network for
sustainable use in a new front-end. Our front-ends remove
background noise and show the tendencies to remove speech-
irrelevant features.

Further, we point out that our experiments show very
different results than the experiment of Li et al. [5]. While
they observed the reconstruction of less speaker information
with more reused layers, our deepest front-end, the front-
end10×5, outperformed the others in every tested aspect. We
argue that this results from our training scheme combined with
Jasper. Our front-ends have probably learned which kernels
are productive for filtering and avoided counterproductive ones
through Jasper’s skip connections.

Furthermore, we demonstrate the benefits of our approach to
modularizing Jasper into a front-end. We show that the front-
end supports a pre-trained Jasper DR 10 × 5 model in noisy
environments. Additionally, we demonstrate that our front-
end supports another ASR system if it uses the front-end for
training. We observe an increased performance for noisy and
clean speech. That raises hope that our front-end will have a
similar effect on ASR systems that work on the same speech
features as Jasper.

While we have shown that our front-end works well on
unknown but predictable sources of noise, we expect that it
will perform well on all kinds of additive noise because of
its convolutional architecture. Our front-end reconstructs each
frame in the output based on multiple frames in the input.
As an example, our deepest front-end considers more than 51
input frames for reconstructing one frame. On the other hand,
our front-end has to be tested on noise that is not additive like
reverberation. We propose that for future work.

Our approach indicates that we can use the noise-filtering
capabilities of a trained ASR system to create a new front-end
that provides cleaner spectral representations. As a result, we
have modularized an end-to-end model. We assume that our
front-end can also contribute to tasks like emotion recognition,
speaker identification, or speech detection if it was adapted.
Furthermore, we hypothesize that our training scheme can be
used for other systems in other domains. We could modularize
several E2E systems if the architecture is beneficial and the
data are given. We are interested to see which impact our work
can have on training large neural networks in the future.
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